
Operating Systems (Fall/Winter 2018)

Operating System Services & Structures

Yajin Zhou (http://yajin.org)

Zhejiang University

Acknowledgement: some pages are based on the slides from Zhi Wang(fsu) and Yubing Xia(SJTU).

http://yajin.org

Review

• Four components of a computer system

• Computer system organization: interrupt, storage, I/O

• Computer system architecture: single processor -> multiple
processors -> multiple cores -> hyper Threading, NUMA …

• OS operations: multiprogramming, multitasking, dual mode operation

• OS resources management: process management, memory
management, file system, storage management, I/O system
management

• Protection and security

A View of Operating System Services

Operating System Services (User/Programmer-
Visible)
• User interface

• most operating systems have a user interface (UI).

• e.g., command-Line (CLI), graphics user interface (GUI), or batch

• Program execution: from program to process

• load and execute an program in the memory

• end execution, either normally or abnormally

• I/O operations

• a running program may require I/O such as file or I/O device

• File-system manipulation

• read, write, create and delete files and directories

• search or list files and directories

• permission management

Operating System Services (User-Visible)

• Communications

• processes exchange information, on the same
system or over a network

• via shared memory or through message passing

• Error detection

• OS needs to be constantly aware of possible
errors

• errors in CPU, memory, I/O devices, programs

• it should take appropriate actions to ensure
correctness and consistency

Operating System Services (System View)
• Resource allocation

• allocate resources for multiple users or multiple jobs running concurrently

• many types of resources: CPU, memory, file, I/O devices

• Accounting/Logging

• to keep track of which users use how much and what kinds of resources

• Protection and security

• protection provides a mechanism to control access to system resources

• access control: control access to resources

• isolation: processes should not interfere with each other

• security authenticates users and prevent invalid access to I/O devices

• a chain is only as strong as its weakest link

• protection is the mechanism, security towards the policy

User Operating System Interface - CLI

• CLI (or command interpreter) allows direct command entry

• a loop between fetching a command from user and executing it

• Commands are either built-in or just names of programs

• itself contains the code to execute the command

• implements most commands through system programs

• if the latter, adding new features doesn’t require shell modification

User Operating System Interface - GUI
• User-friendly desktop metaphor interface

• users use mouse, keyboard, and monitor to interactive with the system

• icons represent files, programs, actions, etc

• mouse buttons over objects in the interface cause various actions

• open file or directory (aka. folder), execute program, list attributes

• invented at Xerox PARC

• Many systems include both CLI and GUI interfaces

• Microsoft Windows is GUI with CLI “command” shell

• Apple Mac OS X as “Aqua” GUI

• Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

• Linux: GNOME/KLDE GUI, and shell

Bourne Shell Command Interpreter

The Mac OS X GUI

Touchscreen Interfaces

• Touchscreen devices require new
interfaces

• Mouse not possible or not
desired

• Actions and selection based on
gestures

• Virtual keyboard for text entry

• Security issues: clickjacking

Figures: https://www.brainpulse.com/articles/accessibility-clickjacking-android-device.php https://www.pcworld.com/article/2364268/parallels-access-2-0-review-remote-desktop-control-from-your-android-phone-or-tablet.html

https://en.wikipedia.org/wiki/Clickjacking
https://www.pcworld.com/article/2364268/parallels-access-2-0-review-remote-desktop-control-from-your-android-phone-or-tablet.html

Voice Commands

• Voice commands

• Security issues: users' voices can be recorded, manipulated,
and replayed to the assistants

• Privacy issues

Figures: https://www.nytimes.com/2017/02/01/technology/personaltech/stop-hijacking-home-devices.html

Figures: https://alltechasia.com/alipay-dismisses-accusation-it-violated-user-privacy-by-snapping-photos/

https://www.businesstoday.in/technology/news/banking-voice-commands-but-security-issues-exist/story/279348.html
https://www.businesstoday.in/technology/news/banking-voice-commands-but-security-issues-exist/story/279348.html
https://www.businesstoday.in/technology/news/banking-voice-commands-but-security-issues-exist/story/279348.html

System Calls

• System call is a programming interface to access the OS
services

• Typically written in a high-level language (C or C++)

• Certain low level tasks are in assembly languages

Example of System Calls

• cp in.txt out.txt

Application Programming Interface

• Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call use

• three most common APIs:

• Win32 API for Windows

• POSIX API for POSIX-based systems (UNIX/Linux, Mac OS X)

• Java API for the Java virtual machine (JVM)

• why use APIs rather than system calls?

• portability

Example of Standard API

System Calls Implementation

• Typically, a number is associated with each system call

• system-call interface maintains a table indexed by these numbers

• e.g., Linux has around 340 system call (x86: 349, arm: 345)

https://w3challs.com/syscalls/?arch=x86
https://w3challs.com/syscalls/?arch=arm_strong

System Calls Implementation

• Kernel invokes intended system call and returns results

• User program needs to know nothing about syscall details

• it just needs to use API (e.g., in libc) and understand what the API
will do

• most details of OS interface hidden from programmers by the API

API – System Call – OS Relationship

Standard C Library Example

• C program invoking printf() library call, which calls write() system call

System Call Parameter Passing
• Parameters are required besides the system call number

• exact type and amount of information vary according to OS and call
• Three general methods to pass parameters to the OS

• Register:
• pass the parameters in registers
• simple, but there may be more parameters than registers

• Block:
• parameters stored in a memory block (or table)
• address of the block passed as a parameter in a register
• taken by Linux and Solaris

• Stack:
• parameters placed, or pushed, onto the stack by the program
• popped off the stack by the operating system

• Block and stack methods don’t limit number of parameters being passed

Parameter Passing via Block/Table

Execve System Call on Linux/x86

• Store syscall number in eax

• Save arg 1 in ebx, arg 2 in ecx, arg 3 in edx

• Execute int 0x80 (or sysenter)

• Syscall runs and returns the result in eax

execve (“/bin/sh”, 0, 0)
eax: 0x0b

ebx: addr of “/bin/sh”

ecx: 0

Execve System Call on Linux/ARM

int execv(const char* name, char* const* argv) {
 return execve(name, argv, environ);
}

ENTRY(execve)
 mov ip, r7
 ldr r7, =__NR_execve
 swi #0
 mov r7, ip
 cmn r0, #(MAX_ERRNO + 1)
 bxls lr
 neg r0, r0
 b __set_errno
END(execve)

Types of System Calls

• Process control

• create process, terminate process

• end, abort

• load, execute

• get process attributes, set process attributes

• wait for time

• wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs, single step execution

• Locks for managing access to shared data between processes

Types of System Calls
• File management

• create file, delete file

• open, close file

• read, write, reposition

• get and set file attributes

• Device management

• request device, release device

• read, write, reposition

• get device attributes, set device attributes

• logically attach or detach devices

• can be combined with file management system call

Types of System Calls
• Information maintenance

• get time or date, set time or date

• get system data, set system data

• get and set process, file, or device attributes

• Communications

• create, delete communication connection

• send, receive messages: message passing model to host name or process name

• From client to server

• Shared-memory model create and gain access to memory regions

• transfer status information

• attach and detach remote devices

Types of System Calls

• Protection

• Control access to resources

• Get and set permissions

• Allow and deny user access

Case Study: ioctl

Case Study: ioctl

Windows and Unix System Calls

Example: MS-DOS

• Single-tasking

• Shell invoked when system booted

• Simple method to run program

• no process created

• single memory space

• loads program into memory, overwriting all but the kernel

• program exit -> shell reloaded

MS-DOS Execution

at system startup running a program

Example: FreeBSD

• A variant of Unix, it supports multitasking

• Upon user login, the OS invokes user’s choice of
shell

• Shell executes fork() system call to create process,
then calls exec() to load program into process

• shell waits for process to terminate or continues
with user commands

• Process exits with:

• code = 0 – no error

• code > 0 – error code

System Services (Programs)

System Services

• System programs provide a convenient environment for program
development and execution. They can be divided into:

• File manipulation

• create/delete/copy files/directories …

• Status information sometimes stored in a file modification

System Services

• Programming language support

• c/python/Java …

• Program loading and execution

• Communications

• between processes, hosts and etc.

• Background services

• services, daemon, sub-system

• Application programs

Review

• Operating system services

• User interface, program execution, I/O, file system manipulation…

• Resource allocation, Logging/accounting, Protection & Security

• System call

• User program - API - system call - OS

• System call implementation: parameter passing

• Types of System call

HW1 is due on Saturday!

Linkers & Loaders

• linker

• from object files to
executable file

• loader

• from program to process

• static linking vs dynamic
linking

• lazy binding

Linkers & Loaders

int f (int x)
{
 if (x <= 1) return x;

 return x - 1;
}

#include <stdio.h>

extern int f (int x);
int i = 2;
char format[] = "f (%d) = %d\n";

int main (int argc, char const *argv[])
{
 int j;
 j = f (i);
 printf (format, i, j);
 return 0;
}

Linkers & Loaders

main.o

f.o

Libgcc
.a

…

Main

Static Linking

00000000 <main>:
 0:	 e92d4010 	 push	{r4, lr}
 4:	 e59f4024 	ldr	 r4, [pc, #36]	 ; 30 <main+0x30>
 8:	 e79f4004 	ldr	 r4, [pc, r4]
 c:	 e5940000 	 ldr	 r0, [r4]
 10:	ebfffffe bl 0 <f>
 14:	e59f3018 	ldr	 r3, [pc, #24]	 ; 34 <main+0x34>
 18:	e1a02000 	 mov	 r2, r0
 1c:	e5941000 	 ldr	 r1, [r4]
 20:	e79f0003 	ldr	 r0, [pc, r3]
 24:	ebfffffe bl 0 <printf>
 28:	e3a00000 	 mov	 r0, #0
 2c:	e8bd8010 	 pop	 {r4, pc}
 30:	00000020 	 .word	 0x00000020
 34:	0000000c 	 .word	 0x0000000c

main.o

00000000 <f>:
 0:	 e3500001 	 cmp	 r0, #1
 4:	 c2400001 	 subgt	 r0, r0, #1
 8:	 e12fff1e 	 bx	 lr

f.o

Parameters are passed using register r0- r3, return value is in register r0.

-> ls -lh libs/armeabi/main
-rwxr-xr-x 1 yajin staff 146K Sep 27 18:53 libs/armeabi/main

Static Linking

0000885c <main>:
 885c:	 e92d4010 	 push	 {r4, lr}
 8860:	 e59f4024 	 ldr	 r4, [pc, #36]	 ; 888c <main+0x30>
 8864:	 e79f4004 	 ldr	 r4, [pc, r4]
 8868:	 e5940000 	 ldr	 r0, [r4]
 886c:	 eb000067 bl 8a10 <f>
 8870:	 e59f3018 	 ldr	 r3, [pc, #24]	 ; 8890 <main+0x34>
 8874:	 e1a02000 	 mov	 r2, r0
 8878:	 e5941000 	 ldr	 r1, [r4]
 887c:	 e79f0003 	 ldr	 r0, [pc, r3]
 8880:	 fa000a3e blx b180 <printf>
 8884:	 e3a00000 	 mov	 r0, #0
 8888:	 e8bd8010 	 pop	 {r4, pc}
 888c:	 0002366c 	 .word	 0x0002366c
 8890:	 00023658 	 .word	 0x00023658
00008a10 <f>:
 8a10:	 e3500001 	 cmp	 r0, #1
 8a14:	 c2400001 	 subgt	 r0, r0, #1
 8a18:	 e12fff1e 	 bx	 lr

0000b180 <printf>:
 b180:	 b40f 	 push	 {r0, r1, r2, r3}
 b182:	 b507 	 push	 {r0, r1, r2, lr}
 b184:	 aa04 	 add	 r2, sp, #16
 b186:	 4b08 	 ldr	 r3, [pc, #32]	 ; (b1a8 <printf+0x28>)
 b188:	 f852 1b04 	 ldr.w	 r1, [r2], #4
 b18c:	 4807 	 ldr	 r0, [pc, #28]	 ; (b1ac <printf+0x2c>)
 b18e:	 447b 	 add	 r3, pc
 b190:	 9201 	 str	 r2, [sp, #4]
 b192:	 581b 	 ldr	 r3, [r3, r0]
 b194:	 f103 0054 	 add.w	 r0, r3, #84	 ; 0x54
 b198:	 f001 fb1a 	 bl	 c7d0 <vfprintf>
 b19c:	 b003 	 add	 sp, #12
 b19e:	 f85d eb04 	 ldr.w	 lr, [sp], #4
 b1a2:	 b004 	 add	 sp, #16
 b1a4:	 4770 	 bx	 lr
 b1a6:	 bf00 	 nop
 b1a8:	 00020e62 	 .word	 0x00020e62
 b1ac:	 ffffff0c 	.word	 0xffffff0c

PC relative addressing so that the code can be loaded into arbitrary addresses in the memory.

Static Linking: in memory

Main

F

Printf

Main

F

Printf

Main

F

Printf

Dynamic Linking

00000000 <main>:
 0:	 e92d4038 	 push	{r3, r4, r5, lr}
 4:	 e59f5024 	ldr	 r5, [pc, #36]	 ; 30 <main+0x30>
 8:	 e08f5005 	add	 r5, pc, r5
 c:	 e1a04005 	 mov	 r4, r5
 10:	e4940008 	 ldr	 r0, [r4], #8
 14:	ebfffffe bl 0 <f>
 18:	e5951000 	 ldr	 r1, [r5]
 1c:	e1a02000 	 mov	 r2, r0
 20:	e1a00004 	 mov	 r0, r4
 24:	ebfffffe bl 0 <printf>
 28:	e3a00000 	 mov	 r0, #0
 2c:	e8bd8038 	 pop	 {r3, r4, r5, pc}
 30:	00000020 	 .word	 0x00000020

main.o

00000000 <f>:
 0:	 e3500001 	 cmp	 r0, #1
 4:	 c2400001 	 subgt	 r0, r0, #1
 8:	 e12fff1e 	 bx	 lr

f.o

-> ls -lh libs/armeabi/main
-rwxr-xr-x 1 yajin staff 9.4K Sep 27 19:09 libs/armeabi/main

Dynamic Linking

000004d0 <main>:
 4d0:	 e92d4038 	 push	 {r3, r4, r5, lr}
 4d4:	 e59f5024 	 ldr	 r5, [pc, #36]	 ; 500
<main+0x30>
 4d8:	 e08f5005 	 add	 r5, pc, r5
 4dc:	 e1a04005 	 mov	 r4, r5
 4e0:	 e4940008 	 ldr	 r0, [r4], #8
 4e4: eb000030 bl 5ac <f>
 4e8:	 e5951000 	 ldr	 r1, [r5]
 4ec:	 e1a02000 	 mov	 r2, r0
 4f0:	e1a00004 	 mov	 r0, r4
 4f4: ebffffe3 bl 488 <printf@plt>
 4f8:	e3a00000 	 mov	 r0, #0
 4fc:	e8bd8038 	 pop	 {r3, r4, r5, pc}
 500:	 00002b20 	 .word	 0x00002b20

00000488 <printf@plt>:
 488:	 e28fc600 	 add	 ip, pc, #0
 48c:	 e28cca02 	 add	 ip, ip, #8192	 ; 0x2000
 490:	 e5bcfb58 	 ldr	 pc, [ip, #2904]!	 ; 0xb58

Location: (0x488 + 0x8) (PC) + 0x2000 + 0xb58 = 0x2fe8

-> arm-linux-androideabi-readelf -S main
There are 36 section headers, starting at offset 0x9a08:

 [19] .got PROGBITS 00002fa4 001fa4 00005c 00 WA 0 0 4

-> arm-linux-androideabi-objdump -R main

00002fe8 R_ARM_JUMP_SLOT printf

The real jump address is in the GOT section, which is readable and writable. The question is
who is going to set the address (0x2fe8) to the real address of the function printf in libc? And
who is responsible to load the correspond libraries into the memory?

-> arm-linux-androideabi-readelf -l main
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

 GNU_RELRO 0x001e6c 0x00002e6c 0x00002e6c 0x00194 0x00194 RW 0x4

Loader

• When loading a binary

• Load the PT_LOADED segments into memory

• Resolve the library dependencies and load the corresponding
libraries into memory

• Set the value in the GOT entry to the actual address of the
function in the libraries (not necessary) - since these processes
are performed when the binary is loading, it may slow the binary
loading process

• Static linking vs dynamic linking

Linkers & Loaders: x86/Lazy Binding
• In the code, a function func is called. The compiler translates it to a call

to func@plt, which is some N-th entry in the PLT.

• The PLT consists of a special first entry, followed by a bunch of
identically structured entries, one for each function needing resolution.

• Each PLT entry but the first consists of these parts:

• A jump to a location which is specified in a corresponding GOT
entry

• Preparation of arguments for a "resolver" routine

• Call to the resolver routine, which resides in the first entry of the PLT

• The first PLT entry is a call to a resolver routine, which is located in the
dynamic loader itself. This routine resolves the actual address of the
function.

• Before the function's actual address has been resolved, the Nth GOT
entry just points to after the jump. This is why this arrow in the diagram
is colored differently - it's not an actual jump, just a pointer.

Figures: https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

Linkers & Loaders: Example

• PLT[n] is called and jumps to the address
pointed to in GOT[n].

• This address points into PLT[n] itself, to the
preparation of arguments for the resolver.

• The resolver is then called.

• The resolver performs resolution of the
actual address of func, places its actual
address into GOT[n] and calls func.

Figures: https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

Linkers & Loaders: Example

• Note that GOT[n] now points to the
actual func [7] instead of back into
the PLT. So, when func is called
again:

• PLT[n] is called and jumps to the
address pointed to in GOT[n].

• GOT[n] points to func, so this just
transfers control to func.

Q: The resolver is a program, then who is responsible for
resolving the symbols in resolver (or is this needed for

resolver)?

Further reading: https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

Figures: https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

Further Reading

Why Applications Are OS Specific

• How

• interpreted language

• VM

• only use standard APIs

• Still it is not a easy task

• different binary format: ELF vs
PE

• different instruction set

• different system call interfaces
WSL: Windows Subsystem for Linux

Figures: https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/

Operating System Structure

Operating System Design and Implementation

• Design and Implementation of OS not “solvable”, but some
approaches have proven successful

• Internal structure of different Operating Systems can vary widely

• Start by defining goals and specifications

• Affected by choice of hardware, type of system

Worse is better, though it’s sad (in some cases)

The good news is that in 1995 we will have a good operating system and programming language;
the bad news is that they will be Unix and C++.

Lips, Erlang

http://dreamsongs.com/RiseOfWorseIsBetter.html

Worse Is Better Philosophy: Simple Is Better
• Simplicity-the design must be simple,

both in implementation and interface.
It is more important for the interface
to be simple than the implementation.

• Correctness-the design must be
correct in all observable aspects.
Incorrectness is simply not allowed.

• Consistency-the design must not be
inconsistent. A design is allowed to be
slightly less simple and less
complete to avoid inconsistency.
Consistency is as important as
correctness.

• Completeness-the design must cover as
many important situations as is practical.
All reasonably expected cases must be
covered. Simplicity is not allowed to
overly reduce completeness.

• Simplicity-the design must be simple, both in implementation
and interface. It is more important for the implementation to
be simple than the interface. Simplicity is the most important
consideration in a design.

• Correctness-the design must be correct in all observable
aspects. It is slightly better to be simple than correct.

• Consistency-the design must not be overly inconsistent.
Consistency can be sacrificed for simplicity in some
cases, but it is better to drop those parts of the design that
deal with less common circumstances than to introduce either
implementational complexity or inconsistency.

• Completeness-the design must cover as many important
situations as is practical. All reasonably expected cases should
be covered. Completeness can be sacrificed in favor of any
other quality. In fact, completeness must sacrificed
whenever implementation simplicity is jeopardized.
Consistency can be sacrificed to achieve completeness if
simplicity is retained; especially worthless is consistency
of interface.

 MIT/Stanford style of design New Jersey approach
Further Reading: https://www.jwz.org/doc/worse-is-better.html, http://blog.reverberate.org/2011/04/eintr-and-pc-

loser-ing-is-better-case.html

https://www.jwz.org/doc/worse-is-better.html
http://blog.reverberate.org/2011/04/eintr-and-pc-loser-ing-is-better-case.html
http://blog.reverberate.org/2011/04/eintr-and-pc-loser-ing-is-better-case.html
http://blog.reverberate.org/2011/04/eintr-and-pc-loser-ing-is-better-case.html

Operating System Design and Implementation

• Important principle: to separate mechanism and policy

• mechanism: how to do it

• policy: what/which will be done

• Mechanisms determine how to do something, policies
decide what/which will be done

• The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later (example – timer)

Review

• Linking

• Loading

• Dynamic linking vs static linking

Operating System Design and Implementation

• Much variation

• Early OSes in assembly language

• Then system programming languages like Algol, PL/1

• Now C, C++

• Actually usually a mix of languages

• Lowest levels in assembly

• Main body in C

• Systems programs in C, C++, scripting languages like PERL, Python, shell scripts

• More high-level language easier to port to other hardware

• But slower

Operating System Structure

• Many structures:

• simple structure - MS-DOS

• more complex -- UNIX

• layered structure - an abstraction

• microkernel system structure - L4

• hybrid: Mach, Minix

• research system: exokernel

Simple Structure: MS-DOS

• No structure at all!: (1981~1994)

• written to provide the most functionality in the least space

• A typical example: MS-DOS

• Has some structures:

• its interfaces and levels of functionality are not well separated

• the kernel is not divided into modules

Monolithic Structure – Original UNIX

• Limited by hardware functionality, the original UNIX had limited
structure

• UNIX OS consists of two separable layers

• systems programs

• the kernel: everything below the system-call interface and above
physical hardware

• a large number of functions for one level: file systems, CPU
scheduling, memory management …

Traditional UNIX System Structure

Layered Approach

• The operating system is divided into a
number of layers (levels)

• each built on top of lower layers

• The bottom layer (layer 0), is the hardware

• the highest (layer N) is the user interface

• With modularity, layers are selected such that

• each uses functions (operations) and
services of only lower-level layers

Microkernel System Structure

• Microkernel moves as much from the kernel (e.g., file systems) into “user” space

• Communication between user modules uses message passing

• Benefits:

• easier to extend a microkernel

• easier to port the operating system to new architectures

• more reliable (less code is running in kernel mode)

• more secure

• Detriments:

• performance overhead of user space to kernel space communication

• Examples: Minix, Mach, QNX, L4…

Microkernel System Structure

Modules

• Most modern operating systems implement kernel modules

• uses object-oriented design pattern

• each core component is separate, and has clearly defined
interfaces

• some are loadable as needed

• Overall, similar to layers but with more flexible

• Example: Linux, BSD, Solaris

• http://www.makelinux.net/kernel_map/

http://www.makelinux.net/kernel_map/

Linux System Structure

• Monolithic plus modular design

Hybrid Systems

• Most modern operating systems are actually not one pure model

• Hybrid combines multiple approaches to address performance, security,
usability needs

• Linux and Solaris kernels in kernel address space, so monolithic, plus
modular for dynamic loading of functionality

• Windows mostly monolithic, plus microkernel for different subsystem
personalities

• Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming
environment

• Below is kernel consisting of Mach microkernel and BSD Unix parts, plus
I/O kit and dynamically loadable modules (called kernel extensions)

macOS and iOS Structure

• user experience: Aqua/Springboard user
interface

• Application frameworks: Cocoa (Touch)
provides API for Object C and Swift
programing languages

• Core frameworks: defines frameworks that
support graphics and media

Darwin: layered + microkernel + modules

• Two system-call interfaces: Mach(trap),
BSD(POSIX)

• Mach provides basic OS services: MM,
scheduling, IPC.

• These services are through tasks (Mach
process), threads, memory objects and
ports (used for IPC)

• fork() in BSD -> kernel abstraction (task)
in Mach

• Kexts: kernel extensions

Layered Microkernel: Minix

Figures:https://imma.wordpress.com/2007/04/02/presentation-internal-structure-of-minix/

Exokernel: Motivation

• In traditional operating systems, only privileged servers and the
kernel can manage system resources

• Un-trusted applications are required to interact with the hardware via
some abstraction model

• File systems for disk storage, virtual address spaces for memory,
etc.

• But application demands vary widely!!

• An interface designed to accommodate every application must
anticipate all possible needs

Exokernel: Motivation

Figures: https://pdos.csail.mit.edu/archive/exo/exo-slides/

Exokernel: Motivation

• Give un-trusted applications as much control over physical
resources as possible

• To force as few abstraction as possible on developers, enabling
them to make as many decisions as possible about hardware
abstractions.

• Let the kernel allocate the basic physical resources of the machine

• Let each program decide what to do with these resources

• Exokernel separate protection from management

• They protect resources but delegate management to application

Exokernel

• Exokernel give more direct access to the hardware, thus removing
most abstractions

Figures:https://medium.com/@vithushaaarabhi/exokernels-an-operating-system-architecture-for-application-level-resource-management-32d0daaeeab0

Traditional OS

FIXED

Hardware

Apache

InterfaceAbstractions

SQL Server

Exokernel

Hardware

Apache

InterfaceAbstractions

SQL Server

Exokernel

Library OS
chosen from available

InterfaceAbstractions

Library OS
customized for SQL Server

Comparison
�
��

�
�
	�
�

��

�
��
��
	�
�

�	
 ���� ��
�������� ���������

	

���

����

Tracing

• Collects data for a specific event, such as steps involved in a system
call invocation

• Tools include

• strace – trace system calls invoked by a process

• gdb – source-level debugger

• perf – collection of Linux performance tools

• tcpdump – collects network packets

Strace

HW2 is out!

