Operating Systems (Fall/Winter 2018)

Operating System Services & Structures

Yajin Zhou (http://yajin.orqg)

Zhejiang University

Acknowledgement: some pages are based on the slides from Zhi Wang(fsu) and Yubing Xia(SJTU).

http://yajin.org

Review

Four components of a computer system
Computer system organization: interrupt, storage, 1/0

Computer system architecture: single processor -> multiple
processors -> multiple cores -> hyper Threading, NUMA ...

OS operations: multiprogramming, multitasking, dual mode operation

OS resources management: process management, memory
management, file system, storage management, 1/0O system
management

Protection and security

A View of Operating System Services

user and other system programs

GUI batch command line

user interfaces

system calls
program /O file communication v accountin
execution operations systems allocation g
error pro;i((:jtlon
detection _ security
services

operating system

hardware

Operating System Services (User/Programmer-,

Visible)

User interface
most operating systems have a user interface (Ul).
e.g., command-Line (CLlI), graphics user interface (GUI), or batch

Program execution: from program to process

e
. 15 root
load and execute an program in the memory 16 root
| | 20 root
end execution, either normally or abnormally .
s
. :~$
I/0 operations -
i=$
=%
a running program may require /O such as file or I/O device =
843
Bt
583 I3

Fi I e - Syste m m a n i p u I ati o n Desktop Downloads Pictures Templates

Videos

Documents Music
:~$ pwd
/home/os
=%

read, write, create and delete files and directories
search or list files and directories

permission management

20
rt
Gt
20

20
0 -2

1
[clclc oMo oNo)

[clol ol oMol o]

[clcl ol oMol oNo)

0S 0.0
0S 0.0
0SS 0.0
0SS 0.0
0SS 0.0
0SS 0.0
0SS 0.0

examples.desktop
0s2018fall

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0:00.00 cpuhp/1
0:00.13 watchdog/1
0:00.01 migration/1
0:00.11 ksoftirqd/1
0:00.00 kworker/1:+
0:00.00 kdevtmpfs
0:00.00 netns

Operating System Services (User-Visible)

Communications

processes exchange information, on the same
system or over a network

via shared memory or through message passing

Error detection

OS needs to be constantly aware of possible

erro rS 1f this is the first time you've seen this Stop error screen,

restart your computer. If this screen appears again, follow
these steps:

you have adequate disk space. If a driver is
n the Stop message, disable the driver or check

errors in CPU, memory, [/O devices, programs Hieii b

Check with your hardware vendor for any BIOS updates. Disable
BI0S memory options such as caching or shadowing. If you need

to use safe Mode to remove or disable components, restart your
computer, press F8 to select Advanced Startup options, and then
select safe Mode.

It should take appropriate actions to ensure

www STOP: Ox0000008E (0xC0000005,0xB6D64846, 0xB69CO040, 0X00000000)

correctness and consistency

Operating System Services (System View)

Resource allocation

allocate resources for multiple users or multiple jobs running concurrently

many types of resources: CPU, memory, file, I/O devices

Accounting/Logging

to keep track of which users use how much and what kinds of resources

Protection and security

protection provides a mechanism to control access to system resources
access control: control access to resources
Isolation: processes should not interfere with each other

security authenticates users and prevent invalid access to 1/O devices
a chain is only as strong as its weakest link

protection is the mechanism, security towards the policy

top - 01:25:31 up 14:16, 3 users,
Tasks: 98 total,

%Cpu(s):
KiB Mem :
KiB Swap:

PID USER
26713 root
1 root

2 root

4 root

6 root

7 root

8 root

9 root
10 root
11 root
12 root
13 root
14 root
15 root
16 root
18 root
19 root
20 ront

1003772 total,

217452 free,

1046524 total, 1046012 free,
PR NI VIRT RES
20 0 0 0
20 0 119600 5076
20 0 0 0

0 -20 0 0
0 -20 0 0
20 0 0 0
20 0 0 0
20 0 0 0
rt o 0 0
rt O 0 0
20 0 0 0
20 0 0 0
rt o 0 0
rt O 0 0
20 0 0 0
0 -20 0 0
20 0 0 0
0 -20 o) o)

1 running, 97 sleeping,
0.2 us, 0.0 sy, 0.0 ni, 99.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
717072 buff/cache
749832 avail Mem

69248 used,
512 used.

SHR S %CPU %MEM

0

w
w
w
o

ol ool ool ool ool olol ol oMoMoNol
N WL LOLOKOKBOOOOnnnnnnn,m

S

(%]

0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
[olNe}

0.0
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
(oMo}

load average: 0.00, 0.00, 0.00
0 stopped,

0 zombie

TIME+ COMMAND
0:00.01 kworker/u6+
0:03.39 systemd
0:00.01 kthreadd
0:00.00 kworker/0:+
0:00.00 mm_percpu_+
0:00.04 ksoftirqd/0
0:01.02 rcu_sched
0:00.00 rcu_bh
0:00.01 migration/0
0:00.13 watchdog/0
0:00.00 cpuhp/0
0:00.00 cpuhp/1
0:00.13 watchdog/1
0:00.01 migration/1
0:00.11 ksoftirqd/1
0:00.00 kworker/1:+
0:00.00 kdevtmpfs
000 AN netne

User Operating System Interface - CLI

CLI (or command interpreter) allows direct command entry
a loop between fetching a command from user and executing it
Commands are either built-in or just names of programs
tself contains the code to execute the commanad
implements most commands through system programs

if the latter, adding new features doesn’t require shell modification

User Operating System Interface - GUI

User-friendly desktop metaphor interface
users use mouse, keyboard, and monitor to interactive with the system
icons represent files, programs, actions, etc
mouse buttons over objects in the interface cause various actions
open file or directory (aka. folder), execute program, list attributes
invented at Xerox PARC
Many systems include both CLI and GUI interfaces
Microsoft Windows is GUI with CLI “command” shell
Apple Mac OS X as “Aqua” GUI
Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Linux: GNOME/KLDE GUI, and shell

Bourne Shell Command Interpreter

& Temina =[=]x
File Edit View Terminal Tabs Help
fdo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O il
sd0 0.0 0.2 0.0 0.2 0.0 0.0 0.4 0 0
sdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
extended device statistics
device r/s w/s kr/s kw/s wait actv svc_t %w %b
fdO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 O
sd0 0.6 0.0 38.4 0.0 0.0 0.0 8.2 0 0
Isdl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

(root@pbg-nv64-vm)-(11/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# swap -sh

total: 1.1C allocated + 190M reserved = 1.3C used, 1.6C available
(root@pbg-nve4-vm)-(12/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# uptime

12:53am up 9 min(s), 3 users, Tload average: 33.29, 67.68, 36.81
(root@pbg-nv64-vm)-(13/pts)-(00:53 15-Jun-2007)-(global)
-(/var/tmp/systen-contents/scripts)# w

(root@pbg-nv64-vm)-(14/pts)-(16:07 02-Jul-2007)-(global)
-(/var/tmp/systen-contents/scripts)#

4:07pm up 17 day(s), 15:24, 3 users, Tload average: 0.09, 0.11, 8.66
User tty login@ 1idle JCPU PCPU what
root console 15Jun0718days 1 /usr/bin/ssh-agent -- fusr/bi
n/d
root pts/3 15Jun07 18 4 w
root pts/4 15Jun0718days W

<

The Mac OS X GUI

@ Grab File Edit &S5 Window Help i
a0 o {2 fig=dir o
T 3 M =
e o | . L' $4 2= G o v E i Rivins
- Faverites> Documenis= [usic= Movies= Pictwrzs> Detktons Apolications= ZPEG~ ZPBGE~ [Disk~-
I © 2007-06s10ungrade |) Desttop @ Comouter (@ fo-dir |
Eirpiy €) 2#3C) imw) bock) wsB-dir) figesie)
e MNzme 4 Knd Dete Modified | Size Apglicatian
% Nerwark o FOF Ef24/07, 1:03PV 1% LB Skm
- Freedom Sci L3 o svo £718/07.5:572M T7kB Inkscape !
= r:e- o B EipE b &0 Fortab e Netw=rz Crazhizs I mage Today. 1:06PM 39248 Freazw ——
& Macmmishi i - © = Today. 1:05PM L1348 lkscane PR
i Unitled - 9 TIFF doeurmet Today, Z:X3FM B30 L KB Freamw \ =
— Untitles 2 .
o ZP8G s
% ZPRGE P IFF
© iDisk s
* Poter Baar Galvin's iFod S
Previes Hzx
Shed e nfo~
T ptg M Name: :gig: -)
A Apalications Kind: TIFF Cocument
'\ Doouments UTi: autkcri
&2
E3 ames CALYENT:BCABLACKS N e
| Udlities ZPEG — e
[tma Size: 380.0 KB 1901236 bytes) ERLISL S b
- data: $01.236 yles
I Deskiop Zhvsical: 881 KE (902,144
‘¥ Favorites Modified:
4 Music C ¥<] awributas:
= Vovies I Tl Histary » b Seiecuor Path ~ i bz (102
oY * fg-20a * fg-2Ca p: admin (g0
- P'_cu.a | hg-dir Permission: —rwoi-—— - (700,
' Sites) Fath: /Valumas '2P3C-1/irp/
& Public L3 asg-dir _:,“::S?:E;"’m'd ! Journler Drop Bo <
| Preferences : B benk Appliztion: Jreven
® Lbrary g, Valume: ZPAC e
g ZPEG Capacity: 7354 (B ' u *
ket » Frae: 7343 0%
| projects o Format: sME 24 Mevida bES
| consult = Mount Point: /\alumas '2P3G-1
] [l] | = | C] 5items 1 0f € iter~s selected - 7343 G3aweilazle 5.1 G3 use: 7 E

Solars 10 al-as

.| Adcress Book —

Qanzle : z

—

A6 Dictionary and Theszurus

[« %] a A Q, oerating system 3 E

windows XF

Mem2) Professional Mac
—. ! Aoplz Computer In P AW" Computer Inc. ¥ —————————————————— Dirttanary
= El Directories | & Aople Computer In " . .
n | Eilas: Import opsereat=ing sys-tem
L roaun
= - " the software th 21 supports a computer s ha<c functions.
 Dec kex Ox Bin ' Deg Rad] i) ||RPN Irfo Tap2 = such as ssheculin g tasks, exesviing applic: dons. acd
I " ' o H main 1-803-MY-APPLE contralling peripher:
: F olher 800-275-2273
home p http:ffvamny.appe.co™
work 1 Infinite _oop
\

C_pert no CA 93014
United S:ztes

=) = found

Touchscreen Interfaces

Touchscreen devices require new
interfaces

Mouse not possible or not
desired

Actions and selection based on
gestures

Virtual keyboard for text entry

Security issues: clickjacking

Figures: https://www.brainpulse.com/articles/accessibility-clickjacking-android-device.php https:

https://en.wikipedia.org/wiki/Clickjacking
https://www.pcworld.com/article/2364268/parallels-access-2-0-review-remote-desktop-control-from-your-android-phone-or-tablet.html

Voice Commands

- Voice commands

- Security issues: users' voices can be recorded, manipulated,
and replayed to the assistants

- Privacy issues

Some also called for more concrete evidence on the accusation, which has yet to be
offered. Another focus of the issue is that the Alipay app is frequently requesting access to
the smartphone’s camera and microphone even when it's idle. Less critical comments said

that even if Alipay didn'’t violate user-privacy by sneaking photos, it may occupy more

storage and eventually ruin Android users’ experiences.

Figures: https://alltechasia.com/alipay-dismisses-accusation-it-violated-user-privacy-by-snapping-photos/

Figures: https://www.nytimes.com/2017/02/01/technology/personaltech/stop-hijacking-home-devices.html

https://www.businesstoday.in/technology/news/banking-voice-commands-but-security-issues-exist/story/279348.html
https://www.businesstoday.in/technology/news/banking-voice-commands-but-security-issues-exist/story/279348.html
https://www.businesstoday.in/technology/news/banking-voice-commands-but-security-issues-exist/story/279348.html

System Calls

System call is a programming interface to access the OS
services

Typically written in a high-level language (C or C++)

Certain low level tasks are in assembly languages

—xample of System Calls

+ Cp In.txt out.txt

source file

>

destination file

4 Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

\

~

4

Application Programming Interface

Mostly accessed by programs via a high-level Application
Programming Interface (API) rather than direct system call use

three most common APlIs:
Win32 API for Windows
POSIX API for POSIX-based systems (UNIX/Linux, Mac OS X)
Java AP for the Java virtual machine (JVM)
why use APIs rather than system calls?

portability

—xample of Standard AP

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_t read(int fd, wvoid *buf, size_t count)
I | | | | |
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size-t data types (among other
things). The parameters passed to read () are as follows:

¢ int fd—the file descriptor to be read

¢ void *buf—a buffer where the data will be read into

¢ size t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

System Calls Implementation

Typically, a number is associated with each system call
system-call interface maintains a table indexed by these numlbers

e.g., Linux has around 340 system call (x86: 349, arm: 345)

https://w3challs.com/syscalls/?arch=x86
https://w3challs.com/syscalls/?arch=arm_strong

System Calls Implementation

Kernel invokes intended system call and returns results
User program needs to know nothing about syscall details

it just needs to use API (e.qg., in libc) and understand what the AP
will do

most details of OS interface hidden from programmers by the API

AP| — System Call — OS Relationship

user application

open ()
user

)

mode

kernel

system call interface

mode

-

open ()

Implementation
of open ()
system call

return

Standard C Library Example

C program invoking printf() library call, which calls write() system call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |-

return O;

)

user
node

standard C library
ernel

node
erite () >
system call

System Call Parameter Passing

Parameters are required besides the system call number
exact type and amount of information vary according to OS and call
Three general methods to pass parameters to the OS
Register:
pass the parameters in registers
simple, but there may be more parameters than registers
Block:
parameters stored in a memory block (or table)
address of the block passed as a parameter in a register
taken by Linux and Solaris
Stack:
parameters placed, or pushed, onto the stack by the program
popped off the stack by the operating system

Block and stack methods don’t limit number of parameters being passed

Parameter Passing via Block/Table

— X
register
X: parameters
for call
™ use parameters code for
load address X / from table X system

system call 13 > call 13

user program

operating system

Execve System Call on Linux/x86

Store syscall number in eax
Save arg 1.in ebx, arg 2 in ecx, arg 3 in edx
Execute int Ox80 (or sysenter)

Syscall runs and returns the result in eax

execve (“/bin/sh”, 0, 0)

eax: Ox0b
ebx: addr of “/bin/sh”
ecx: 0

Execve System Call on Linux/ARM

int execv(const char* name, char* const* argv) {
return (name, argv, environ);

}

ENTRY(execve)
mov ip, r7
Idr r7,=_NR_execve

swi #0

mov r7,ip

cmn r0, #(+ 1)

bxls Ir

neg r0,r0

b __set_errno
END(execve)

#if defined(__thumb__) || defined(__ARM_EABI__)

#define __NR_SYSCALL_BASE 0

#felse

#define __NR_SYSCALL_BASE ——_NR_OABI_SYSCALL_BASE
#endif

#define __NR_execve (__NR_SYSCALL_BASE+ 11)

Types of System Calls

Process control
create process, terminate process
end, abort
load, execute
get process attributes, set process attributes
wait for time
wait event, signal event
allocate and free memory
Dump memory if error
Debugger for determining bugs, single step execution

Locks for managing access to shared data between processes

Types of System Calls

File management
create file, delete file
open, close file
read, write, reposition
get and set file attributes
Device management
request device, release device
read, write, reposition
get device attributes, set device attributes
logically attach or detach devices

can be combined with file management system call

Types of System Calls

Information maintenance
get time or date, set time or date
get system data, set system data
get and set process, file, or device attributes
Communications
create, delete communication connection
send, receive messages: message passing model to host name or process name
From client to server
Shared-memory model create and gain access to memory regions
transfer status information

attach and detach remote devices

Types of System Calls

Protection
Control access to resources
Get and set permissions

Allow and deny user access

Case Study: ioctl

top

ioctl - control device

SYNOPSIS top

#include <sys/ioctl.h>

int ioctl(int fd, unsigned long request, ...);

DESCRIPTION top

The ioctl() system call manipulates the underlying device parameters
of special files. 1In particular, many operating characteristics of
character special files (e.g., terminals) may be controlled with
ioctl() requests. The argument fd must be an open file descriptor.

The second argument is a device-dependent request code. The third
argument is an untyped pointer to memory. It's traditionally char
*argp (from the days before void * was valid C), and will be so named
for this discussion.

An ioctl() request has encoded in it whether the argument is an in
parameter or out parameter, and the size of the argument argp in
bytes. Macros and defines used in specifying an ioctl() request are
located in the file <sys/ioctl.h>.

RETURN VALUE top

Usually, on success zero is returned. A few ioctl() requests use the
return value as an output parameter and return a nonnegative value on
success. On error, -1 is returned, and errno is set appropriately.

Case Study: ioctl

ioctl calls minimize the complexity of the kernel's system call interface. However, by providing a place for developers to "stash" bits and pieces of
kernel programming interfaces, ioctl calls complicate the overall user-to-kernel API. A kernel that provides several hundred system calls may provide
several thousand ioctl calls.

Though the interface to ioctl calls appears somewhat different from conventional system calls, there is in practice little difference between an ioctl
call and a system call; an ioctl callis simply a system call with a different dispatching mechanism. Many of the arguments against expanding the
kernel system call interface could therefore be applied to ioctl interfaces.

Security | edit]

The user-to-kernel interfaces of mainstream operating systems are often audited heavily for code flaws and security vulnerabilities prior to release. These
audits typically focus on the well-documented system call interfaces; for instance, auditors might ensure that sensitive security calls such as changing
user IDs are only available to administrative users.

ioctl interfaces are more complicated, more diverse, and thus harder to audit than system calls. Furthermore, because ioctl calls can be provided
by third-party developers, often after the core operating system has been released, ioctl call implementations may receive less scrutiny and thus
harbor more vulnerabilities. Finally, many ioctl calls, particularly for third-party device drivers, are undocumented.

Windows and Unix System Calls

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()

Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

Unix

fork()
exit ()
wait()

open()
read ()
write()
close()

ioctl()
read()

write()

getpid()
alarm()
sleep()

pipe()
shmget ()
mmap ()

chmod ()
umask ()
chown ()

—xample: MS-DOS

Single-tasking
Shell invoked when system booted
Simple method to run program
NO Process created
single memory space
loads program into memory, overwriting all but the kernel

program exit -> shell reloaded

MS-

DOS

—xecution

at system startup

free memory

running a program

free memory

command
Interpreter

process

kernel

command
interpreter

(a)

kernel

(b)

—xample: FreeBSD

A variant of Unix, it supports multitasking

Upon user login, the OS invokes user’s choice of process D
shell

free memory

Shell executes fork() system call to create process,
then calls exec() to load program into process process C

shell waits for process to terminate or continues

. Interpreter
with user commands P
code = 0 — no error

kernel

code > O — error code

System Services (Programs)

user user user user
1 2 3 n
F 3 [2 f F
¥ 4 L 4
compiler assembler text editor database
system

system and application programs

operating system

computer hardware

System Services

System programs provide a convenient environment for program
development and execution. They can be divided into:

File manipulation
create/delete/copy files/directories ...

Status information sometimes stored in a file modification

:~$ df -1h
Filesystem Size Used Avail Use% Mounted on
udev 465M O 465M 0% /dev
tmpfs 99M 8.4M 9OM 9% /run
/dev/sdal 62G 4.2G 55G 8% /
tmpfs 491M 0 491M 0% /dev/shm
tmpfs 5.0M 4.0K 5.0M 1% /run/lock
tmpf's 491M 0 491M 0% /sys/fs/cgroup
tmpf's 99M 0 99M 0% /run/user/1000

:~$ free -lh

total used free shared buff/cache available

Mem: 980OM 63M 220M 8.0M 695M 737M
Low: 980OM 759M 220M
High: OB OB OB

Swap: 1.0G 512K 1.0G

System Services

Programming language support 8 python

Python 2.7.12 (default, Dec 4 2017, 14:50:18)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> print "Hello World!"

¢ C/py’[hOﬂ/J ava ... Hello World!

>>>

- Program loading and execution
- Communications
- between processes, hosts and etc.

- Background services

:~$ cat /etc/crontab
/etc/crontab: system-wide crontab
Unlike any other crontab you don't have to run the ‘crontab’
command to install the new version when you edit this file

o SerVICeS, daemon, SU b—SyStem # and files in /etc/cron.d. These files also have username fields,

that none of the other crontabs do.

SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

- Application programs
17 * * % % root cd / && run-parts --report /etc/cron.hourly

25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.daily)
47 6 * % 7 root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.weekly)
52 6 1% *x root test -x /usr/sbin/anacron || (cd / && run-parts --report /etc/cron.monthly)

#

Review

Operating system services
User interface, program execution, 1/O, file system manipulation...
Resource allocation, Logging/accounting, Protection & Security
System call
User program - API - system call - OS
System call implementation: parameter passing

Types of System call

HW1 is due on Saturday!

Linkers & Loaders

linker . .
~lidis main.c
program

. v

from object files to

executable file (compier) gcc 1 main.c
generates
loader - objec main.o
files . | |
from progl’am tO pI’OCGSS “A(Ekar) gcc -0 maln main.o -1lm

l generates

static linking vs dynamic i
linking 0

| | e (loader) ./main
lazy binding “

4 program
in memory

Linkers & Loaders

#include <stdio.h>

extern int £ (int x);

int 1 = 2; int £ (int Xx)
char format[] = "f (%d) = %d\n"; {

if (x <= 1) return x;
int main (int argc, char const *argv[])

{ return x - 1;
int j; }
J = £ (1);
printf (format, i, Jj);
return 0;

Linkers & Loaders

gcc -E gcc —s as
source pre— ’ expanded : assembl | object
code)[processor source code ¥ >|,assem bler code
(xxx.c) (xxx.3) (xxx.0)
main.o
f.o
Main
Libgcc
.d

Static Linking

00000000 <main>:
0: €92d4010 push {r4, Ir}
4. eb9f4024 Idr r4, [pc, #306] ; 30 <main+0x30>
8: er79f4004 Idr r4, [pc, r4]

c: €5940000 dr 0, [r4]

10: ebfffffe bl 0 <f> 00000000 <f>:

14: e59f3018 Idr r3, [pc, #24] : 34 <main+0x34> 0: 3500001 cmp rO, #1

18: 1202000 mov r2, rO 4. ¢2400001 subgt rO, rO, #1
1c: 5941000 ldr 1, [r4] 8: el2fffle bx Ir

20: e79f0003 Idr rO, [pc, r3]

24: ebfffffe bl 0 <printf> f.o

28: e3a00000 mov r0, #0

2¢: e8bd8010 pop {r4, pc}

30: 00000020 .word 0x00000020
34: 0000000c .word 0x0000000c¢

main.o

-> |s -Ih libs/armeabi/main
-rwxr-xr-x 1 yajin staff 146K Sep 27 18:53 libs/armeabi/main

Parameters are passed using register rO- r3, return value is in register rO.

Static Linking

0000885¢c <main>:
885¢: €92d4010
8860: e59f4024
8864: e79f4004
8868: e5940000
886c¢: eb000067
8870: e59f3018
8874: e1a02000
8878: e5941000
887c: e79f0003
8880: fa000a3e
8884 e3a00000
8888: e8bd8010
888c: 00023066¢C
8890: 00023658

00008a10 <f>:
8a10: e3500001
8al14: 2400001
8a18: el12fffle

push
|dr

|dr

|dr

bl

|dr
mov
|dr

|dr
bix
mov
POP
.word
.word

cmp
subgt
00

{rd, Ir}

r4, [pc, #306]
r4, [pc, r4]
r0, [r4]
8a10 <f>
r3, [pe, #24]
2,10

1, [r4]

r0, [pc, r3]
b180 <printfs
r0, #0

{r4, pc}
0x0002366¢
0x00023658

: 888¢c <main+0x30>

: 8890 <main+0x34>

rO, #1
rO, rO, #1
Ir

0000b180 <printf>:
b180: b40f
b182: 507
184 aa04
b186: 4b08
b188: f852 1b04
b18c: 4807
b18e: 4470
190: 9201
b192: 581b
0194 f103 0054
198: fO01 fbla
b19c: 003
b19e: f85d eb04
bla2: 004
bla4: 4770
b1a6: f00
b1a8: 00020e62
blac:

push
push
add
|dr
ldr.w
|dr
add
Sstr
|dr
add.w
pl
add
ldr.w
add
bx
nop
.word

{rO, r1, r2, r3}
{rO, r1, r2, Ir}
r2, sp, #16
r3, [pc, #32]
r1, [r2], #4
r0, [pc, #28]
r3, pC

2, [sp, #4]
r3, [r3, rO]

rO, r3, #84

; (b1a8 <printf+0x28>)

; (b1ac <printf+0x2c>)

; Oxb4

c7dO <vfprintf>

sp, #12
Ir, [sp], #4
sp, #16
Ir

0x00020e62

ffffffOc .word OxffffffOc

PC relative addressing so that the code can be loaded into arbitrary addresses in the memory.

Static Linking: in memory

Main Main Main

Printf Printf Printf

Dynamic Linking

00000000 <main>:
0: €92d4038 push {r3, r4, r5, Ir}
4. eb9ftb024 Idr r5, [pc, #36] ; 30 <main+0x30>

8: e08f5005 add rb5, pc, r5 00000000 <f>:

c: e1a04005 mov r4, rd5 0: 3500001 cmp rO, #1

10: 4940008 Idr 1O, [r4], #8 4 c2400001 subgt rO, rO, #1
14: ebfffffe bl 0 <f> 8: el12fffle bx Ir

18: €5951000 dr 11, [5]

1c: e1a02000 mov r2, rO f.o

20: e1a00004 mov r0, r4

24. ebfffffe bl 0 <printf>

28:. e3a00000 mov r0, #0

2¢: e8bd8038 pop {r3, r4, r5, pc}

30: 00000020 .word 0Ox00000020

main.o

-> |s -Ih libs/armeabi/main
-rwxr-xr-x 1 yajin staff 9.4K Sep 27 19:09 libs/armeabi/main

Dynamic Linking

000004d0 <main>:

4d0: €92d4038 push {r3, r4, r5, Ir}

4d4: e59f5024 Idr r5, [pc, #36] ; 500
<main+0x30>

4d8: e08f5005 add b, pc, rb

4dc: e1a04005 mov r4,r5

4e0: e4940008 Idr rO, [r4], #8

4e4: eb000030 Dbl bac <f>

4€8; e5951000 Idr r1, [r5]

4dec: e1a02000 mov 2, r0

4f0:e1a00004 mov 10, r4

414 ebffffe3 bl 488 <printf@plt>

418:3a00000 mov rO, #0
4fc:e8bd8038 pop {r3,r4, r5, pc}
500: 00002b20 .word 0x00002b20

00000488 <printf@plt>:

488: e28fc600 add ip, pc, #0

48c: e28ccal?2 add ip, ip, #8192 ; 0x20060

490: ebbcfb58 Idr pC, [ip, #2904]! ; OXb58

Location: (0x488 + 0x8) (PC) + 0x2000 + 0xb58 = 0x2fe8

-> arm-linux-androideabi-readelf -S main
There are 36 section headers, starting at offset 0x9a08:

[19] .got PROGBITS 00002fa4 001fa4 00005¢ 00 WA O O 4

-> arm-linux-androideabi-objdump -R main

00002fe8 R_ARM_JUMP_SLOT printf

-> arm-linux-androideabi-readelf -| main
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

GNU_RELRO 0x001e6c 0x00002e6¢ 0x00002e6¢ 0x00194 Ox00194 RW Ox4

The real jump address is in the GOT section, which is readable and writable. The question is
who is going to set the address (0x2fe8) to the real address of the function printf in libc? And
who is responsible to load the correspond libraries into the memory?

Loader

When loading a binary
Load the PT_LOADED segments into memory

Resolve the library dependencies and load the corresponding
libraries into memory

Set the value in the GOT entry to the actual address of the
function in the libraries (not necessary) - since these processes
are performed when the binary is loading, it may slow the binary
loading process

Static linking vs dynamic linking

Linkers & Loaders: x86/Lazy Binding

In the code, a function func is called. The compiler translates it to a call
to func@plt, which is some N-th entry in the PLT.

The PLT consists of a special first entry, followed by a bunch of
identically structured entries, one for each function needing resolution.

Each PLT entry but the first consists of these parts: C°ie:: —
A jump to a location which is specified in a corresponding GOT
entry GOT:
. . ; . PLT: S
Preparation of arguments for a "resolver” routine o
—p| PLT[0] : P <addr>
call resolver
Call to the resolver routine, which resides in the first entry of the PLT i
jmp *GOT[n]
The first PLT entry is a call to a resolver routine, which is located in the oo T
dynamic loader itself. This routine resolves the actual address of the
function.

Before the function's actual address has been resolved, the Nth GOT
entry just points to after the jump. This is why this arrow in the diagram
is colored differently - it's not an actual jump, just a pointer.

Figures: https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

Linkers & Loaders: Example

PLT[n] is called and jumps to the address
pointed to in GOTInN].

This address points into PLT[n] itself, to the Code.

preparation of arguments for the resolver. call funcerLt
: GOT:
The resolver is then called. .
—p| PLT[0] : GfiZchczim—
The resolver performs resolution of the e —
' jmp *GOT[n]
actual address of func, places its actual T

address into GOT[n] and calls func.

Figures: https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

Linkers & Loaders: Example

Note that GOT[n] now points to the
actual func [7] instead of back into

. Code:
the PLI. So, when func is called AT
again: -
GOT:
PLT[n] is called and jumps to the A cortnl:
address pointed to in GOTIn].
PLT[n]: -
J'rE\p]'*GO'I‘[n]. — Code:
;jr;zpi[ve”g(]esc o f'.;:‘.c:i<

GOTI[Nn] points to func, so this just
transfers control to func.

Q: The resolver is a program, then who is responsible for
resolving the symbols in resolver (or is this needed for
resolver)?

Further reading: https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

Figures: https://eli.thegreenplace.net/2011/11/03/position-independent-code-pic-in-shared-libraries/

Further Reading

BAXREF L

EiE RN 22

Linkers and Loaders

[2£] John R. Levine ¥
F B &

R D A TR 5
— . KSR

M- AL RERE %

e 8 i A RER IS

Why Applications Are OS Specific

How
Interpreted language
VM
only use standard APIs
Still it is not a easy task

different binary format: ELF vs
PE

different instruction set

different system call interfaces

WSL: Wlndows Subsystem for Llnux

Figures: https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/

Operating System Structure

Operating System Design and Implementation

Design and Implementation of OS not “solvable”, but some
approaches have proven successful

Internal structure of different Operating Systems can vary widely
Start by defining goals and specifications

Affected by choice of hardware, type of system

Worse is better, though it’s sad (in some cases)

The good news is that in 1995 we will have a good operating system and programming language;
the bad news is that they will be Unix and C++.

Lips, Erlang

http://dreamsongs.com/RiseOfWorseIsBetter.html

Worse Is Better Philosophy: Simple |s Better

Simplicity-the design must be simple,
both in implementation and interface.
It is more important for the interface
to be simple than the implementation.

Correctness-the design must be
correct in all observable aspects.
Incorrectness is simply not allowed.

Consistency-the design must not be
inconsistent. A design is allowed to be
slightly less simple and less
complete to avoid inconsistency.
Consistency is as important as
correctness.

Completeness-the design must cover as
many important situations as is practical.
All reasonably expected cases must be
covered. Simplicity is not allowed to
overly reduce completeness.

MIT/Stanford style of design

Simplicity-the design must be simple, both in implementation
and interface. It is more important for the implementation to
be simple than the interface. Simplicity is the most important
consideration in a design.

Correctness-the design must be correct in all observable
aspects. It is slightly better to be simple than correct.

Consistency-the design must not be overly inconsistent.
Consistency can be sacrificed for simplicity in some
cases, but it is better to drop those parts of the design that
deal with less common circumstances than to introduce either
implementational complexity or inconsistency.

Completeness-the design must cover as many important
situations as is practical. All reasonably expected cases should
be covered. Completeness can be sacrificed in favor of any
other quality. In fact, completeness must sacrificed
whenever implementation simplicity is jeopardized.
Consistency can be sacrificed to achieve completeness if
simplicity is retained; especially worthless is consistency
of interface.

New Jersey approach

Further Reading: https://www.jwz.org/doc/worse-is-better.html, http://blog.reverberate.org/2011/04/eintr-and-pc-

loser-ing-is-better-case.html

https://www.jwz.org/doc/worse-is-better.html
http://blog.reverberate.org/2011/04/eintr-and-pc-loser-ing-is-better-case.html
http://blog.reverberate.org/2011/04/eintr-and-pc-loser-ing-is-better-case.html
http://blog.reverberate.org/2011/04/eintr-and-pc-loser-ing-is-better-case.html

Operating System Design and Implementation

Important principle: to separate mechanism and policy
- mechanism: how to do it
- policy: what/which will be done

- Mechanisms determine how to do something, policies
decide what/which will be done

- The separation of policy from mechanism Is a very
important principle, it allows maximum flexibility if policy
decisions are to be changed later (example — timer)

Review

Linking
Loading

Dynamic linking vs static linking

Operating System Design and Implementation

Much variation

Early OSes in assembly language

Then system programming languages like Algol, PL/1

Now C, C++
Actually usually a mix of languages

Lowest levels in assembly

Main body in C

Systems programs in C, C++, scripting languages like PERL, Python, shell scripts
More high-level language easier to port to other hardware

But slower

Operating System Structure

Many structures:
simple structure - MS-DOS
more complex -- UNIX
layered structure - an abstraction
microkernel system structure - L4
hybrid: Mach, Minix

research system: exokernel

Simple Structure: MS-DOS

 No structure at all!: (1981~1994)

- written to provide the most functionality in the least space
- A typical example: MS-DOS

- Has some structures:

- [ts Interfaces and levels of functionality are not well separated

I

- the kernel is not divided into modules

application program

resident system program

MS-DOS device drivers’

ROM BIOS device drivers

Monolithic Structure — Original UNIX

Limited by hardware functionality, the original UNIX had limited
structure

UNIX OS consists of two separable layers
systems programs

the kernel: everything below the system-call interface and above
physical hardware

a large number of functions for one level: file systems, CPU
scheduling, memory management ...

Traditional UNIX System Structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

- signals terminal file system CPU scheduling

C . handling swapping block /O page replacement

N, character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

Layered Approach

The operating system is divided into a
number of layers (levels)

layer N
user interface

each built on top of lower layers

The bottom layer (layer 0), is the hardware

the highest (layer N) is the user interface
With modularity, layers are selected such that

each uses functions (operations) and
services of only lower-level layers

Microkernel System Structure

Microkernel moves as much from the kernel (e.g., file systems) into “user” space
- Communication between user modules uses message passing
Benefits:
- easler to extend a microkernel
- easler to port the operating system to new architectures
- more reliable (less code is running in kernel mode)
* More secure
Detriments:
- performance overhead of user space to kernel space communication

Examples: Minix, Mach, QNX, L4...

Microkernel System Structure

application file device user
program system driver mode
A A A A _
messages .' : messages T

CPU
scheduling

memory
managment

kernel

interprocess
mode

communication

A microkernel A

hardware

Modules

Most modern operating systems implement kernel modules
* USes object-oriented design pattern

+ each core component is separate, and has clearly defined
iInterfaces

- some are loadable as needed
- Overall, similar to layers but with more flexible

Example: Linux, BSD, Solaris

- http://www.makelinux.net/kernel_map/

http://www.makelinux.net/kernel_map/

Linux System Structure

Monolithic plus modular design applications

glibc standard c library

system-call interface

file CPU
systems scheduler
networks memory
(TCP/IP) manager
block character

devices devices
device drivers

hardware

functionalities
layers human interface

HI char devices

odev add

PN Lo

ideo_fops
console_lops

user
space
interfaces

system calls
and system files
sys_capset fb_fops
sys_syslog

S |

virtual

user peripherals

keyboard camera

electronics

audio

system

- interfaces core

System Call Interface

linux/syscalls.h
A f
linux/uaccess.h bl o

_from_user _ops

system files

mﬁs‘er{dvdw sys_ioctl
cdev_add

feysiclass cdev_map sys_epoll_create

sys_reboot

sys_init_module om_d joch

omem VO Pei

ACPI USB controller
controller

Linux kernel map

processing

—_ processes
fs/exec.c
sys_kill
sys_signal
do_sigaction

_vfork

Sys_execve sys_clone

linux_binfmt
sys_gettimeofday
sys_time
sys_times

sys_futex

WA \VANE

CPU

nterrupt

registers APIC controller

kemel/signal.c sys_fork

memory

memory access

sys_brk
Sys_mmap shm_vm_ops

sys_sysinfo EVR NS
sys_shmat

mm/

si_meminfo sys_mprotect

mincore
/dev/imem i

mem_fops

/proc/meminfo mmap_me

/proc/self/maps

irtual n

vmalloc_init

sys_msync

storage

. files & directories
=~ access

sys_chaw sys_toe SY5_poll sys_writ

sys_pipe sys_select do_path |
ye_getdents\ sys_flock sys_reaow

Beorownlii: 3

memory

disk controllers

scsl SATA

N im_dgrar‘n@s h&mﬂu ops

networking

o sockets access

sys_socketcall
sys_connect

sys_socket
_accept
sys_bind
sys_listen
sys_sendmsg
Sys_recvmsg
sys_setsockopt

/proc/net/
tcpd_seq_show
§_proc_seq_show_dev
1t_cache_seq_show

sock_ioctl

protocol families

inet_init sock_create
N ~*socket

inet_family_ops
inel_groglo unix_{amily_ops

proto_ops

ocket.file_lops

network controllers

Ethernet WiFi

Hybrid Systems

Most modern operating systems are actually not one pure model

Hybrid combines multiple approaches to address performance, security,
usability needs

Linux and Solaris kernels in kernel address space, so monolithic, plus
modular for dynamic loading of functionality

Windows mostly monolithic, plus microkernel for different subsystem
personalities

Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa programming
environment

Below is kernel consisting of Mach microkernel and BSD Unix parts, plus
/0O kit and dynamically loadable modules (called kernel extensions)

macOS and I0S Structure

user experience: Agqua/Springboard user
Interface

Application frameworks: Cocoa (Touch)
provides API for Object C and Swift
programing languages

Core frameworks: defines frameworks that
support graphics and media

applications

v

user experience

application frameworks

core frameworks

kernel environment (Darwin)

Darwin: layered + microkernel + modules

Two system-call interfaces: Mach(trap),
BSD(POSIX)

Mach provides basic OS services: MM,
scheduling, IPC.

These services are through tasks (Mach
process), threads, memory objects and
ports (used for IPC)

fork() in BSD -> kernel abstraction (task)
in Mach

Kexts: kernel extensions

applications

Y

Y

library interface

0 v
Mach BSD (POSIX)
traps system calls
Y m+emory
scheduling | IPC management
iokit
Mach kernel

kexts

Layered Microkernel: Minix

Minix Layered Micro Kernel Architecture

r ™
shell :
User Process oI
daemons
.. and more

Layer 3 Information Server <. and more ’g
Server Process Process Manager > %
File System §

- . @ <P

Y

Kernel Mode

Figures:https://imma.wordpress.com/2007/04/02/presentation-internal-structure-of-minix/

—xokernel: Motivation

In traditional operating systems, only privileged servers and the
kernel can manage system resources

Un-trusted applications are required to interact with the hardware via
some abstraction model

File systems for disk storage, virtual address spaces for memory,
etc.

But application demands vary widely!!

An interface designed to accommodate every application must
anticipate all possible needs

—xokernel: Motivation

Traditional OS structure

Network Disk

slow and can't fix it!

Exokernel: application control

Application software can override OS
Fast!

Cache HN

TCP S
exokernel

Network Disk

Figures: https://pdos.csail.mit.edu/archive/exo/exo-slides/

—xokernel: Motivation

Give un-trusted applications as much control over physical
resources as possible

To force as few abstraction as possible on developers, enabling
them to make as many decisions as possible about hardware
abstractions.

Let the kernel allocate the lbasic physical resources of the machine
Let each program decide what to do with these resources
Exokernel separate protection from management

They protect resources but delegate management to application

—xokernel

- Exokernel give more direct access to the hardware, thus removing
most abstractions

t A A

Normal Kernel Exokernel
Programs communicate with Libraries or Kernel
Programs can

communicate with the
Kernel hardware much more
directly

[Library } [Library }
v '

o

Figures:https://medium.com/@vithushaaarabhi/exokernels-an-operating-system-architecture-for-application-level-resource-management-32d0daaeeab0

Traditional OS

—xokernel

! |
Library OS Library OS
chosen from available customized for SQL Server

Comparison

User-Mode

Kernel-Mode

DOS UNIX MicroKernel ExoKernel

Tracing

Collects data for a specific event, such as steps involved in a system
call invocation

Tools include
strace — trace system calls invoked by a process
gdb — source-level debugger
perf — collection of Linux performance tools

tcpdump — collects network packets

Strace

:~/0s2018fall/code/1_cpu$ strace ./cpu 'A’
execve("./cpu”, ["./cpu", "A"], [/* 32 vars *x/]) =0

fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) =0
brk (NULL) = OxeddOOO
brk (0xefe000) = OxefeO00
write(1, "A\n", 2A

) = 2

write(1, "A\n", 2A

) =2

write(1, "A\n", 2A

) = 2

AC--- SIGINT {si_signo=SIGINT, si_code=SI_KERNEL} ---
strace: Process 26654 detached

HWZ2 is out!

